气候对居民的影响举例_气候对居民的影响有哪些
1.复杂多样的气候对中国的生产,生活有什么影响
2.气候变化对人类活动和经济发展具有什么影响
3.举例说明气候对人类的影响
4.全球气候变暖会给人类带来哪些影响
5.全球气候变暖的影响与危害有哪些?
人类活动对气候的影响有两种:一种是无意识的影响,即在人类活动中对气候产生的副作用;一种是为了某种目的,取一定的措施,有意识地改变气候条件。在现阶段,以第一种影响占绝对优势,而这种影响以以下三方面表现得最为显著,即①在工农业生产中排放至大气中的温室气体和各种污染物质,改变大气的化学组成;②在农牧业发展和其它活动中改变下垫面的性质,如破坏森林和草原植被,海洋石油污染等等;③在城市中的城市气候效应。自世界工业革命后的200年间,随着人口的剧增,科学技术发展和生产规模的迅速扩大,人类活动对气候的这种不利影响越来越大。因此,必须加强研究力度,取措施,有意识地规划和控制各种影响环境和气候的人类活动,使之向有利于改善气候条件的方向发展。
(一)改变大气化学组成与气候效应
工农业生产排入大量废气、微尘等污染物质进入大气,主要有二氧化碳(CO2)、甲烷(CH4)、一氧比二氮(N2O)和氟氯烃化合物(CFCS)等。据确凿的观测事实证明,近数十年来大气中这些气体的含量都在急剧增加,而平流层的臭氧O3。总量则明显下降。如前所述,这些气体都具有明显的温室效应,在波长9500毫微米(μm)及12500-17000μm有两个强的吸收带,这就是O3及CO2的吸收带。特别是CO2的吸收带,吸收了大约70-90%的红外长波辐射。地气系统向外长波辐射主要集中在7000-13000μm波长范围内,这个波段被称为大气窗。上述CH4、N2O、CFCS等气体在此大气窗内均各有其吸收带,这些温室气体在大气中浓度的增加必然对气候变比起着重要作用。
大气中CO2浓度在工业化之前很长一段时间里大致稳定在约(280±10)×10-3ml/L,但在近几十年来增长速度甚快,至1990年已增至345×10-3ml/L,90年代以后,增长速大。图8·14(图略)给出美国哈威夷马纳洛亚站(Mauna Loa)1959-1993年实测值的逐年变化。大气中CO2浓度急剧增加的原因,主要是由于大量燃烧化石燃料和大量砍伐森林所造成的。据研究排放入大气中的CO2有一部分(约有50%上下)为海洋所吸收,另有一部分被森林吸收变成固态生物体,贮存于自然界,但由于目前森林大量被毁,致使森林不但减少了对大气中CO2的吸收,而且由于被毁森林的燃烧和腐烂,更增加大量的CO2排放至大气中。目前,对未来CO2的增加有多种不同的估计,如按现在CO2的排放水平计算,在2025年大气中CO2浓度为4.25×10-3mL/L为工业化前的1.55倍。
甲烷(CH4沼气)是另一种重要的温室气体。它主要由水稻田、反刍动物、沼泽地和生物体的燃烧而排放入大气。在距今200年以前直到11万年前,CH4含量均稳定于0.75-0.80×10-3mL/L.近年来增长很快。1950年CH4含量已增加到1.25×10-3mL/L,1990年为1.72×10-3mL/L。Dlugokencky等根据全球23个陆地定点测站和太平洋上14个不同纬度的船舶观测站观测记录,估算出近10年来全球逐年CH4在大气中混合比(M)的变化值如图8·15(图略)所示。根据目前增长率外延,大气中CH4含量将在公元2000年达2.0×10-3mL/L,2030年和2050年分别达2.34至2.50×10-3mL/L。
一氧化二氮(N2O)向大气排放量与农田面积增加和施放氮肥有关。平流层超音速飞行也可产生N2O。在工业化前大气中N2O含量约为2.85×10-3mL/L。1985年和1990年分别增加到3.05×10-3mL/L和3.10×10-3mL/L。考虑今后排放,预计到2030年大气中N2O含量可能增加到3.50×10-3-4.50×10-3mL/L之间,N2O除了引起全球增暖外,还可通过光化学作用在平流层引起臭平氧O3离解,破坏臭氧层。
氟氯烃化合物(CFCS)是制冷工业(如冰箱)、喷雾剂和发泡剂中的主要原料。此族的某些化合物如氟里昂11(CCl2F,CFC11)和氟里昂12(CCl2F2,CFC12)是具有强烈增温效应的温室气体。近年来还认为它是破坏平流层臭氧的主要因子,因而限制CFC11和CFC12生产巳成为国际上突出的问题。
在制冷工业发展前,大气中本没有这种气体成分。CFC11在1945年、CFC12往存在1935年开始有工业排放。到1980年,对流层低层CFC11含量约为168×10-3mL/L而CFC12为285×10-3mL/L,到1990年则分别增至280×10-3mL/L和484×10-3mL/L,其增长是十分迅速的。图8·16(图略)给出CFC12近数十年来的变化形势,其未来含量的变化取决于今后的限制情况。
根据专门的观测和计算大气中主要温室气体的浓度年增量和在大气中衰变的时间如表8·7(图略)所示。可见除CO2外,其它温室气体在大气中的含量皆极微,所以称为微量气体。但它们的增温效应极强,而且年增量大,在大气中衰变时间长,其影响甚巨。
臭氧(O3)也是一种温室气体,它受自然因子(太阳辐射中紫外辐射对高层大气氧分子进行光化学作用而生成)影响而产生,但受人类活动排放的气体破坏,如氟氯烃化合物、卤化烷化合物、N2O和CH4、CO均可破坏臭氧。其中以CFC11、CFC12起主要作用,其次是N2O。图8·17(图略)是各气候带纬向平均臭氧总量距平值的年际变比(196-1985年,由图可见,自80年代初期以后,臭氧量急剧减少,以南极为例,最低值达-15%,北极为-5%以上,从全球而言,正常情况下振荡应在土2%之间,据1987年实测,这一年达-4%以上。从60°N-60°S间臭氧总量自18年以来已由平均为300多普生单位减少到1987年290单位以下,亦即减少了3-4%。从垂直变化而言,以15-20km高空减少最多,对流层低层略有增加。南极臭氧减少最为突出,在南极中心附近形成一个极小区,称为“南极臭氧洞”。自19年到1987年,臭氧极小中心最低值由270单位降到150单位,小于240单位的面积在不断扩大,表明南极臭氧洞在不断加强和扩大。在1988年其O3总量虽曾有所回升,但到1989年南极臭氧洞又有所扩大。1994年10月4日世界气象组织发表的研究报告表明,南极洲3/4的陆地和附近海面上空的臭氧已比十年前减少了65%还要多一些①。但有资料表明对流层的臭氧却稍有增加。
大气中温室气体的增加会造成气候变暖和海平面抬高。根据目前最可靠的观测值的综合,自1885以来直到1985年间的100年中,全球气温已增加0.6-0.9℃。图8·10(图略)中点出了1860年到1985年实际的气温变化(对于1985年全球年平均气温的差值),表明全球增暖的趋势也是0.8℃左右。1985年以后全球地面气温仍在继续增加,多数学者认为是温室气体排放所造成的。图中列出三种不同情况温室气体的排放所产生的增温效应,从气候模式计算结果还表明此种增暖是极地大于赤道,冬季大于夏季。
全球气温升高的同时,海水温度也随之增加,这将使海水膨胀,导致海平面升高。再加上由于极地增暖剧烈,当大气中CO2浓度加倍后会造成极冰融化而冰界向极地萎缩,融化的水量会造成海平面抬升。实际观测资料证明,自1880年以来直到1980年,全球海平面在百年中已抬高了10-12cm。据计算,在温室气体排放量控制在1985年排放标准情况下,全球海平面将以5.5cm/10a速度而抬高,到2030年海平面会比1985年增加20cm,2050年增加34cm,若排放不加控制,到2030年,海平面就会比1985年抬升60cm,2050年抬升150cm。
温室气体增加对降水和全球生态系统都有一定影响。据气候模式计算,当大气中CO2含量加倍后,就全球讲,降水量年总量将增加7-11%,但各纬度变化不一。从总的看来,高纬度因变暖而降水增加,中纬度则因变暖后副热带干旱带北移而变干旱,副热带地区降水有所增加,低纬度因变暖而对流加强,因此降水增加。
就全球生态系统而言,因人类活动引起的增暖会导致在高纬度冰冻的苔原部分解冻,森林北界会更向极地方向发展。在中纬度将会变干,某些喜湿润温暖的森林和生物群落将逐渐被目前在副热带听见的生物群落所替代、根据预测,CO2加倍后,全球沙漠将扩大3%,林区减少11%,草地扩大11%,这是中纬度的陆地趋于干旱造成的。
温室气体中臭氧层的破坏对主态和人体健康影响甚大。臭氧减少,使到达地面的太阳辐射中的紫外辐射增加。大气中臭氧总量若减少1%,到达地面的紫外辐射会增加2%,此种紫外辐射会破坏核糖核酸(DNA)以改变遗传信息及破坏蛋白质,能杀死10m水深内的单细胞海洋浮游生物、减低渔产,以及破坏森林,减低农作物产量和质量,削弱人体免疫力、损害眼睛、增加皮肤癌等疾病。
此外,由于人类活动排放出来的气体中还有大量硫化物、氮比物和人为尘埃,它们能造成大气污染,在一定条件下会形成“酸雨”,能使森林、鱼类、农作物及建筑物蒙受严重损失。大气中微尘的迅速增加会减弱日射,影响气温、云量(微尘中有吸湿性核)和降水。
(二)改变下垫面性质与气候效应
人类活动改变下垫面的自然性质是多方面的,目前最突出的是破坏森林、坡地、干旱地的植被及造成海洋石油污染等。
森林是一种特殊的下垫面,它除了影响大气中CO2的含量以外,还能形成独具特色的森林气候,而且能够影响附近相当大范围地区的气候条件。森林林冠能大量吸收太阳入射辐射,用以促进光合作用和蒸腾作用,使其本身气温增高不多,林下地表在白天因林冠的阻挡,透入太阳辐射不多,气温不会急剧升高,夜晚因有林冠的保护,有效辐射不强,所以气温不易降低。因此林内气温日(年)较差比林外裸露地区小,气温的大陆度明显减弱。
森林树冠可以截留降水,林下的疏松腐植质层及枯枝落叶层可以蓄水,减少降雨后的地表径流量,因此森林可称为“绿色蓄水库”。雨水缓缓渗透入土壤中使土壤湿度增大,可供蒸发的水分增多,再加上森林的蒸腾作用,导致森林中的绝对湿度和相对湿度都比林外裸地为大。
森林可以增加降水量,当气流流经林冠时,因受到森林的阻障和磨擦,有强迫气流的上升作用,并导致湍流加强,加上林区空气湿度大,凝结高度低,因此森林地区降水机会比空旷地多,雨量亦较大。据实测资料,森林区空气湿度可比无林区高15-25%,年降水量可增加6-10%。
森林有减低风速的作用,当风吹向森林时,在森林的迎风面,距森林100m左右的地方,风速就发生变比。在穿入森林内,风速很快降低,如果风中挟带泥沙的话,会使流沙下沉并逐渐固定。穿过森林后在森林的背风面在一定距离内风速仍有减小的效应。在干旱地区森林可以减小干旱风的袭击,防风固沙。在沿海大风地区森林可以防御海风的侵袭,保护农田,森林根系的分泌物能促使微生物生长,可以改进土壤结构。森林覆盖区气候湿润,水土保持良好,生态平衡有良性循环,可称为“绿色海洋”。
根据考证,历史上世界森林曾占地球陆地面积的2/3,但随着人口增加,农、牧和工业的发展,城市和道路的兴建,再加上战争的破坏,森林面积逐渐减少,到19世纪全球森林面积下降到46%,20世纪初下降到37%,目前全球森林覆盖面积平均约为22%。我国上古时代也有浓密的森林覆盖,其后由于人口繁衍,农田扩展和明清两代战祸频繁,到1949年全国森林覆盖率已下降到8.6%。建国以来,党和组织大规模造林,人造林的面积达4.6亿亩,但由于底子薄,毁林情况相当严重,目前森林覆盖面积仅为12%,在世界160个国家中居116位。
由于大面积森林遭到破坏,使气候变旱,风沙尘暴加剧,水土流失,气候恶化。相反,我国在解放后营造了各类防护林,如东北西部防护林、豫东防护林、西北防沙林、冀西防护林、山东沿海防护林等等,在改造自然,改造气候条件上已起了显著作用。
在干旱、半干旱地区,原来生长着具有很强耐旱能力的草类和灌木,它们能在干旱地区生存,并保护那里的土壤。但是,由于人口增多,在干旱、半干旱地区的移民增加,他们在那里扩大农牧业,挖掘和集旱生植物作燃料(特别是坡地上的植物),使当地草原和灌木等自然植被受到很大破坏。坡地上的雨水汇流迅速,流速快,对泥土的冲刷力强,在失去自然植被的保护和阻挡后,就造成严重的水土流失。在平地上一旦干旱时期到来,农田庄稼不能生长,而开垦后疏松了的土地又没有植被保护,很容易受到风蚀,结果表层肥沃土壤被吹走,而沙粒存留下来,产生沙漠化现象。畜牧业也有类似情况,牧业超过草场的负荷能力,在干旱年份牧草稀疏、土地表层被牲畜践踏破坏,也同样发生严重风蚀,引起沙漠化现象的发生。在沙漠化的土地上,气候更加恶化,具体表现为:雨后径流加大,土壤冲刷加剧,水分减少,使当地土壤和大气变干,地表反射率加大,破坏原有的热量平衡,降水量减少,气候的大陆度加强,地表肥力下降,风沙灾害大量增加,气候更加干旱,反过来更不利于植物的生长。
据联合国环境规划署估计,当前每年世界因沙漠化而丧失的土地达6万km2,另外还有21万km2的土地地力衰退,在农、牧业上已无经济价值可言。沙漠化问题也同样威胁我国,在我国北方地区历史时期所形成的沙漠化土地有12万km2,近数十年来沙漠化面积逐年递增,因此必须有意识地取积极措施保护当地自然植被,进行大规模的灌溉,进行人工造林,因地制宜种植防沙固土的耐旱植被等来改善气候条件,防止气候继续恶化。
海洋石油污染是当今人类活动改变下垫面性质的另一个重要方面,据估计每年大约有10亿t以上的石油通过海上运往消费地。由于运输不当或油轮失事等原因,每年约有100万t以上石油流入海洋,另外,还有工业过程中产生的废油排入海洋。有人估计,每年倾注到海洋的石油量达200-1000万t。
倾注到海中的废油,有一部分形成油膜浮在海面,抑制海水的蒸发,使海上空气变得干燥。同时又减少了海面潜热的转移,导致海水温度的日变化、年变化加大,使海洋失去调节气温的作用,产生“海洋沙漠化效应”。在比较闭塞的海面,如地中海、波罗的海和日本海等海面的废油膜影响比广阔的太平洋和大西洋更为显著。
此外,人类为了生产和交通的需要,填湖造陆,开凿运河以及建造大型水库等,改变下垫面性质,对气候亦产生显著影响。例如我国新安江水库于1960年建成后,其附近淳安县夏季较以前凉爽,冬季比过去暖和,气温年较差变小,初霜推迟,终霜提前,无霜期平均延长20天左右。
(三)人为热和人为水汽的排放
随着工业、交通运输和城市化的发展,世界能量的消耗迅速增长,仅10年全世界消耗的能量就相当于燃烧了75亿t煤,放出25×10-10J的热量。其中在工业生产、机动车运输中有大量废热排出,居民炉灶和空调以及人、畜的新陈代谢等亦放出一定的热量,这些“人为热”像灭炉一样直接增暖大气。目前如果将人为热平均到整个大陆;等于在每平方米的土地上放出0.05W的热量。从数值上讲,它和整个地球平均从太阳获得的净辐射热相比是微不足道的,但是由于人为热的释放集中于某些人口稠密、工商业发达的大城市,其局地增暖的效应就相当显著。如表8·8所示,在高纬度城市如费尔班克斯、莫斯科等,其年平均人为热(QF)的排放量大于太阳净辐射;中纬度城市如蒙特利尔、曼哈顿等,因人均用能量大,其年平均人为热QF的排放量亦大于Rg。特别是蒙特利尔冬季因空调取暖耗能量特大,其人为热竟相当于太阳净辐射的11倍以上。但是像热带的香港,赤道带的新加坡,其人为热的排放量与太阳净辐射相比就微乎其微了。
在燃烧大量化石燃料(天然气、汽油、燃料油和煤等)时除有废热排放外,还向空气中释放一定量的“人为水汽”,根据美国大城市气象试验(METROMEX)对圣路易斯城由燃烧产生的人为水汽量为10.8×108g/h,而当地夏季地面的自然蒸散量为6.7×1011g/h。显然人为水汽量要比自然蒸散的水汽量小得多,但它对局地低云量的增加有一定作用。
据估计目前全世界能量的消耗每年约增长5.5%。如按这个速度增加下去,到公元2000年,全世界能量消耗将比10年增加5倍,即年耗能为375亿t煤。其排放出的人为热和人为水汽又主要集中在城市中,对城市气候的影响将愈来愈显示其重要性。
*见周淑贞,束炯.城市气候学.北京:气象出版社.19;1
此外,喷气飞机在高空飞行喷出的废气中除混有CO2外,还有大量水汽,据研究平流层(50hPa高空)的水汽近年来有显著的增加,例如1964年其水汽含量为2×10-3ml/L,10年就上升到3×10-3mL/L,这就和大量喷气飞机经常在此高度飞行有关。水汽的热效应与CO2相似,对地表有温室效应。有人计算,如果平流层水汽量增加5倍,地表气温可升高2℃,而平流层气温将下降10℃。在高空水汽的增加还会导致高空卷云量的加多,据估计在大部分喷气机飞行的北美-大西洋-欧洲航线上,卷云量增加了5-10%。云对太阳辐射及地气系统的红外辐射都有很大影响,它在气候形成和变化中起着重要的作用。
(四)城市气候
城市是人类活动的中心,在城市里人口密集,下垫面变化最大。工商业和交通运输频繁,耗能最多,有大量温室气体、“人为热”、“人为水汽”、微尘和污染物排放至大气中。因此人类活动对气候的影响在城市中表现最为突出。城市气候是在区域气候背景上,经过城市化后,在人类活动影啊下而形成的一种特殊局地气候。在80年代初期美国学者兰兹葆曾将城市与郊区各气候要素的对比总结如表8·9所示
从大量观测事实看来,城市气候的特征可归纳为城市“五岛”效应(混浊岛、热岛、干岛、湿岛、雨岛)和风速减小、多变。
见H.E.Landsberg,The Urban Climate.Academic Press.1981.
(1)城市混浊岛效应
城市混浊岛效应主要有四个方面的表现。首先城市大气中的污染物质比郊区多,仅就凝结核一项而论,在海洋上大气平均凝结核含量为940粒/cm3,绝对最大值为39800粒/cm3;而在大城市的空气中平均为147000粒/cm3,为海洋上的156倍,绝对最大值竟达400000粒/cm3,也超出海洋上绝对最大值100倍以上。再以上海为例,根据近5年(1986-1990年)监测结果,大气中SO2和NO2两种气体污染物城区平均浓度分别比郊县高8.7倍和2.4倍。
其次,城市大气中因凝结核多,低空的热力湍流和机械湍流又比较强,因此其低云量和以低云量为标准的阴天日数(低云量≥8的日数)远比郊区多。据上海近十年(1980-1989年)统计,城区平均低云量为4.0,郊区为2.9。城区一年中阴天(低云量≥8)日数为60天而郊区平均只有31天,晴天(低云量≤2)则相反,城区为132天而郊区平均却有178天,欧美大城市如慕尼黑、布达佩斯和纽约等亦观测到类似的现象。第三,城市大气中因污染物和低云量多,使日照时数减少,太阳直接辐射(S)大大削弱,而因散射粒子多,其太阳散射辐射(D)却比干洁空气中为强。在以D/S表示的大气混浊度(又称混浊度因子turbidity foctor)的地区分布上,城区明显大于郊区。根据上海近27年(1959-1985年)观测资料统计计算,上海城区混浊度因子比同时期郊区平均高15.8%。在上海混浊度因子分布图上,城区呈现出一个明显的混浊岛(图8·19,图略)。在国外许多城市亦有类似现象。
第四,城市混浊岛效应还表现在城区的能见度小于郊区。这是因为城市大气中颗粒状污染物多,它们对光线有散射和吸收作用,有减小能见度的效应。当城区空气中二氧比氮NO2浓度极大时,会使天空呈棕褐色,在这样的天色背景下,使分辨目标物的距离发生困难,造成视程障碍。此外城市中由于汽车排出废气中的一次污染物——氮氧化合物和碳氢比物,在强烈阳光照射下,经光化学反应,会形成一种浅蓝色烟雾,称为光化学烟雾,能导致城市能见度恶化。美国洛杉机、日本东京和我国兰州等城市均有此现象。
(一)下垫面因素:
1.下垫面不透水面积大:城市中除少量绿地外,绝大部分为人工铺砌的道路、广场建筑物和构筑物,其下垫面不透水面积远比郊区绿野为大。降雨后,雨水很快从排水管道流失,因此其可供蒸发的水分比郊区少。在能量平衡中其所获得的净辐射Qn用于蒸散的潜热QE远比郊区为少,而用于下垫面增温和向空气输送的显热QH则比郊区多。这就使得城区下垫面温度比郊区高,形成“城市下垫面温度热岛”,并从而通过湍流交换和长波辐射使城区气温高于郊区。
2.下垫面的热性质:城市下垫面的导热率K和热容量C
面的储热量显著高于郊区。白天储热量多,夜晚地面降温比郊区慢,通过地-气热交换,城区气温乃比郊区高。
3.下垫面的几何形状:城市中建筑物参差错落,形成许多高宽比不同的“城市街谷”。在白天太阳照射下,由于街谷中墙壁与墙壁间,墙壁与地面之间,多次的反射和吸收,在其它条件相同的情况下,能够比郊区获得较多的太阳辐射能,如果墙壁和屋顶涂刷较深的颜色,则其反射率会更小,吸收的太阳能将更多,并因为墙壁、屋顶和地面的建筑材料又具有较大的导热率和热容量,“城市街谷”于日间吸收和储存的热能远比郊区为多。
其次,“城市街谷”中,天穹可见度(smy view fector,简作SVF,以表示)比空旷郊区小(图8·21,图略)在街谷底部长波辐射能的交换中,其长波逆辐射值除来自大气的逆辐射外,还有墙壁、屋檐等向下方的长波辐射。因此其长波净辐射的热能损失就比郊区旷野小,再加上城市街谷中风速又比较小,热量不易外散,这些都导致其气温高于郊区。
(二)人为热和温室气体
1.人为热:在中高纬度城市特别是在冬季,城市中排放的大量人为热是热岛形成的一个重要因素。许多城市冬季热岛强度大于暖季,周一至周五热岛强度大于周末,即受此影响。
2.温室气体:城市中因能源消耗量大,排放至大气中的CO2等温室气体远比郊区为多,其增湿效应很明显
(三)天气形势与气象条件
1.在稳定的气压梯度小的天气形势下,才有利于城市热岛的形成。在强冷锋过境时,即无热岛现象。
2.在风速大,空气层结不稳定时,城郊之间空气的水平和垂直方向的混合作用强,城区与郊区间的温差不明显。一般情况是夜晚风速小,空气稳定度增大,热岛乃增强。
3.在晴天无云时,城郊之间的反射率差异和长波辐射差异明显,有利于热岛的形成。
(2)城市热岛效应
根据大量观测事实证明,城市气温经常比其四周郊区为高。特别是当天气晴朗无风时,城区气温Tu与郊区气温Tr的差值△Tu-r(又称热岛强度)更大。例如上海在年10月22日20时天晴,风速1.8m/s,广大郊区气温在13℃上下,一进入城区气温陡然升高(图8·20,图略),等温线密集,气温梯度陡峻,老城区气温在17℃以上,好像一个“热岛”矗立在农村较凉的“海洋”之上。城市中人口密集区和工厂区气温最高,成为热岛中的“高峰”(又称热岛中心),城中心62中学气温高达18.6℃比近郊川沙、嘉定高出5.6℃,比远郊松江高出6.5℃,类似此种强热岛在上海一年四季均可出现,尤以秋冬季节晴稳无风天气下出现频率最大。
世界上大大小小的城市,无论其纬度位置、海陆位置、地形起伏有何不同,都能观测到热岛效应。而其热岛强度又与城市规模、人口密度、能源消耗量和建筑物密度等密切有关。
城市热岛的形成有多种因素(详见表8·10),其中下垫面因素、人为热和温室气体的排放是人类活动影响的两个方面。但在同一城市,在不同天气形势和气象条件下,热岛效应有时非常明显(晴稳、无风),热岛强度可达6℃-10℃上下,有时则甚微弱或不明显(大风、极端不稳定)。由于热岛效应经常存在,大城市的月平均和年平均气温经常高于附近郊区。
(3)城市干岛和湿岛效应
在表8·8中指出城市相对湿度比郊区小,有明显的干岛效应,这是城市气候中普遍的特征。城市对大气中水汽压的影响则比较复杂,以上海为例,据近7年(-1990年)城区11个站水汽压eu和相对湿度RHu的平均值与同时期周围4个近郊站平均水汽压er和相对湿度RHr相比较(见表8·11)
相对湿度都有明显的日变化。据实测△RHu-r的绝对值虽有变化,但皆为负值。全天皆呈现出“城市干岛效应”。△eu-r的日变化则不同,如果按一天中4个观测时刻(02、08、14、20时),分别计算其平均值,则发现在一年中多数月份夜间02
市湿岛”。在暖季4月至11月有明显的干岛与湿岛昼夜交替的现象,其中尤以8月份为最突出。图8·22、8·23(图略)给出年8月13日14时(城市干岛)和同日02时(城市湿岛)干岛与湿岛昼夜交替的一次实例,此类现象在欧美许多城市大都经常出现于暖季。
上述现象的形成,既与下垫面因素又与天气条件密切相关。在白天太阳照射下,对于下垫面通过蒸散过程而进入低层空气中的水汽量,城区(绿地面积小,可供蒸发的水汽量少)小于郊区。特别是在盛夏季节,郊区农作物生长茂密,城郊之间自然蒸散量的差值更大。城区由于下垫面粗糙度大(建筑群密集、高低不齐),又有热岛效应,其机械湍流和热力湍流都比郊区强,通过湍流的垂直交换,城区低层水汽向上层空气的输送量又比郊区多,这两者都导致城区近地面的水汽压小于郊区,形成“城市干岛”。到了夜晚,风速减小,空气层结稳定,郊区气温下降快,饱和水汽压减低,有大量水汽在地表凝结成露水,存留于低层空气中的水汽量少,水汽压迅速降低。城区因有热岛效应,其凝露量远比郊区少,夜晚湍流弱,与上层空气间的水汽交换量小,城区近地面的水汽压乃高于郊区,出现“城市湿岛”。这种由于城郊凝露量不同而形成的城市湿岛,称为“凝露湿岛”,且大都在日落后若干小时内形形成,在夜间维持。图8·22即是凝露湿岛的一个实例,在日出后因郊区气温升高,露水蒸发,很快郊区水汽压又高于城区,即转变为城市干岛。在城市干岛和城市湿岛出现时,必伴有城市热岛,这是因为城市干岛是城市热岛形成的原因之一(城市消耗于蒸散的热量少),而城市湿岛的形成又必须先具备城市热岛的存在。
复杂多样的气候对中国的生产,生活有什么影响
罗摩洛·兰考说,全球变暖很快将影响每个人的生活,贫穷的地方受到的影响会更大。同为本报告作者的,斯坦福大学的特里·鲁特(Terry Root)说:“我们已经处在灭绝的边缘。”
该报告指出,全球变暖会带来如下的后果:
――几亿非洲居民和几千万拉美居民将在不到20年内饮用水出现短缺。到2050年超过十亿的亚洲居民将面临水源短缺。根据汽车和工业所排放的温室气体的多少,到2080年水源短缺将威胁11亿到32亿人。
――到2030年,由于全球变暖所造成的穷人死亡率将升高。疟疾和登革热以及食用污染海产品所造成疾病的发生率上升。
――到2050年,欧洲的小冰川将会消失,陆地大冰川将会显著缩小。到2100年欧洲超过一半的植物物种将会濒临灭亡。
――到2080年,由于全球变暖而遭受饥荒的人数将在2-6亿。
――到2080年,随着海平面的上升,每年遭洪灾的人数约有一亿。
――美国城市的烟霾现象将会严重。本世纪中期由于气候变化导致的臭氧污染将比上世纪90年代增加4.5%,使健康问题恶化。
――野生北极熊以及其他动物将会消失。
――初期会有更多粮食,比如,在开始的几十年,拉美的大豆和水稻产量将会增加。热带以外区域,尤其是北纬地区将出现植物生长期延长和更茂盛的森林。
一方面,气候变化会给极地地区的森林、农业和交通带来正面的效果,而另一方面,危害则更可能发生在海洋和沿海生态系统。受全球变暖影响最大的地区将会是非洲、亚洲、一些小岛和两极附近的一些区域。预计北美、欧洲和澳大利亚所受到的影响最小。报告草稿中写道,“世界大部分地区和大多数人的生活方式将由于气候变化而改变。”
这份报告的着重点在于全球变暖将会如何影响我们的地球和我们的生活。维多利亚大学的气候科学家安德鲁·维夫(Andrew Weer)说:“这就是这个故事的全部情节。这就是气候变化如何影响人类。科学是一方面,这是气候变化如何影响你我他。”
很多――但不是全部――这些影响可以被阻止,报告指出,如果我们这一代能够减少二氧化碳的排放,如果温室气体的水平能够稳定下来,如果这些都能做到的话,报告说,“对人类的主要影响可以避免,但是对生态系统的影响很可能要发生”。
气候变化对人类活动和经济发展具有什么影响
1、气候条件的优势,复杂多样的气候,使世界上大多数农作物和动植物都能在中国找到适宜生长的地方,使中国农作物与动植物都非常丰富。例如玉米的故乡在墨西哥,引种到中国后却广泛种植,已成为中国重要的粮食作物之一。红薯最早引种在浙江一带,在全国普遍种植。
2、中国季风气候显著的特征,也为中国农业生产提供了有利条件,因夏季气温高,热量条件优越,这使许多对热量条件需求较高的农作物在中国种植范围的纬度远比世界上其他同纬度国家的偏高,例如水稻可在北纬52°的黑龙江省呼玛县种植。
3、夏季多雨,高温期与多雨期一致,有利于农作物生长发育,例如中国长江中下游地区气候温暖湿润,物产富饶,是亚热带季风气候,而与之同纬度的非洲北部、阿拉伯半岛等地却多呈干旱、半干旱的荒漠景观。
4、气候的多样性影响中国的民俗。中国各地区传统服饰差异较大,如中国南方傣族衣着简单凉爽,而藏族服装则宽大厚实。
5、气候的多样化影响中国各地的饮食习惯。我国各地饮食有很大差异,如中国西南地区湿气较重而喜辣味
6、气候的多样性影响建筑和民居特色。传统民居在建筑结构上很注重与当地气候相适应,如傣族的竹楼,注重通风散热,而北方居民则注重防寒保暖。
百度百科-气候
举例说明气候对人类的影响
全球气候变暖已经是不争的事实,如何应对气候变暖对人类生存环境的挑战,是正在北京召开的气候变化国际科学讨论会的主题之一。世界气象组织秘书长奥巴西教授指出,气候变化让我们又多了一个立即取紧急行动的理由。
当前最急迫的是我们对于全球变暖还缺少基本的认知,气温升高到底会改变些什么。中国气象局气候变化特别顾问丁一汇说,气候变暖将会带来一些有利的影响,如:温度升高使中纬度的一些地区存在着作物增产的可能;全球木材供应可能会增加;对某些缺水地区的居民来讲,可用水量可能增加;中高纬度地区居民因冬季寒冷的死亡率降低;由于出现暖冬,取暖所需能源减少。但是对国民经济的影响将是以负面影响为主。
———种植业首当其冲受到冲击。气候变暖使蒸发加大,如果降水量不明显增加,将会使我国农牧交错带南扩。东北与内蒙古相接地区农牧交错带的界限将南移70公里左右,华北北部农牧交错带的界限将南移150公里左右,西北部农牧交错带界线将南移20公里左右,草原的面积将因此增加。但农牧过渡带是潜在的沙漠化地区,沙化威胁巨大。
气候变暖后,土壤有机质中的微生物分解将加快,造成地力下降,需要施用更多的肥料;气候变暖同样对昆虫、杂草有利,这使得农药和除草剂的施用量增大。
———农业生产成本将大幅增加。到2030年,我国种植业产量在总体上因全球变暖可能会减少5%~10%左右,其中小麦、水稻和玉米三大作物均以减产为主。年平均温度增加1°C,大于10°C积温的持续日数全国平均就延长15天,冬小麦的安全种植北界也将由目前的长城一线北移到沈阳-张家口-包头-乌鲁木齐一线。到2050年,气候变暖将使三熟制的北界北移500公里之多,从长江流域移至黄河流域;而两熟制地区将北移至目前一熟制地区的中部,一熟制地区的面积将减少23.1%。
———水将变得更少更脏。全球变暖会影响整个水循环过程,可能使蒸发加大,改变区域降水量和降水分布格局,增加降水极端异常的发生,导致洪涝、干旱灾害的频次和强度增加,以及使地表径流发生变化。
我国七大流域天然年径流量整体上呈减少趋势。其中,长江及其以南地区年径流量变幅较少;淮河及其以北地区变幅最大,以辽河流域增幅最大,黄河上游次之,松花江最小。全球变暖还使得我国各流域年平均蒸发增大,其中黄河及内陆河地区的蒸发量将可能增大15%左右。
在干旱年份,气候变暖引起的缺水量将大大加剧我国华北、西北等地区的缺水形势,对农业灌溉用水的影响远远大于对工业用水和生活用水的影响,尤其是在降水减少和蒸发增加的地区。预计2010——2030年西部地区缺水量约为200亿立方米,2050年将缺水100亿立方米。全球变暖将使降水变率随着平均降水量的增加而发生变化,蒸发量也会因全球平均温度增加而增大,这可能意味着未来旱涝等灾害的出现频率会增加。
由于蒸发量加大,河水流量趋于减少,河流原有的污染程度可能会加重,特别是在枯水季节。同时,河水温度的上升,也会促进河流里污染物沉积、废弃物分解,进而使水质下降。
———个人生活质量将会下降。气候变暖对人类健康的直接影响将更加明显,高温使得、细菌、、敏感原更活跃,同时它也会损害人的精神、人体免疫力和疾病抵抗力。高温热浪的增加将使与热有关的疾病和死亡增加。全球变暖对人类健康造成的不利影响对贫穷地区的人口将是最大的。
气候变暖对人居环境产生影响,居住在河边和海岸带的居民受气候变暖最普遍、最直接的威胁是洪涝和滑坡。人类居住目前正遭遇包括水和能源短缺、垃圾处理和交通等环境问题,这些问题因高温、多雨而加剧。人口居住密度很高的低海拔海岸区的城市,更是经常处于海岸气候极端的威胁之中。在我国,居民收入大部分来源于受气候支配的初级产业,气候变暖对我国的不利影响将更严重
全球气候变暖会给人类带来哪些影响
案例一:长江中下游平原气候大部分属北亚热带,小部分属中亚热带北缘。年均温14~18℃,最冷月均温0~5.5℃,绝对最低气温-10~-20℃,最热月均温27~28℃,无霜期210~270天。农业一年二熟或三熟 ,年降水量 1000~1400 毫米 ,集中于春、夏两季。地带性土壤仅见于低丘缓冈,主要是黄棕壤或黄褐土。南缘为红壤,平原大部为水稻土。农业发达,土地垦殖指数高(上海62.1%,江苏45.6% ),是重要的粮、棉、油生产基地。盛产稻米、小麦、棉花、油菜、桑蚕、苎麻 、黄麻等。
河汊纵横交错 ,湖荡星罗棋布 ,湖泊面积2万平方千米 ,相当于平原面积 10% 。两湖平原上 ,较大的湖泊有1300多个,包括小湖泊,共计1万多个,面积1.2万多平方千米,占两湖平原面积的20%以上,是中国湖泊最多的地方 。有鄱阳湖、洞庭湖、太湖、洪泽湖、巢湖等大淡水湖,与长江相通,具有调节水量,削减洪峰的天然水库作用,产鱼 、虾、蟹、莲、菱、苇,还有中华鲟、扬子鳄、白暨豚等世界珍品,水产在中国占重要地位,素称鱼米之乡。
案例二:三江平原属温带湿润、半湿润大陆性季风气候,全年日照时数2400~2500小时,1月均温-21~-18℃,7月均温21~22℃,无霜期120~140天,10℃以上活动积温2 300~2 500℃。冻结期长达7~8个月,最大冻深1.5~2.1米。年降水量500~650毫米,75~85%集中在6~10月。三江平原广阔低平的地貌,降水集中夏秋的冷湿气侯,径流缓慢,洪峰突发的河流,以及季节性冻融的粘重土质,促使地表长期过湿,积水过多,形成大面积沼泽水体和沼泽化植被、土壤,构成了独特的沼泽景观。沼泽与沼泽化土地面积约240万公顷,是中国最大的沼泽分布区。湿生和沼生植物主要有小叶章、沼柳、苔草和芦苇等。其中以苔草沼泽分布最广,占沼泽总面积的85%左右,其次是芦苇沼泽。土壤类型主要有黑土、白浆土、草甸土、沼泽土等,而以草甸土和沼泽土分布最广。三江平原素以“北大荒”著称,在50年代大规模开垦前,草甸、沼泽茫茫无际,亦有成片森林,野生动物繁多。开垦后建有许多大型国营农场,“北大荒”已变成了“北大仓”,成为国家重要的商品粮基地。
案例三:截至目前,新疆风能发电装机总容量18.6万千瓦,约占全国的23%。在新疆风力发电已成为很多边远农牧区解决生活用电的主要方式之一。
新疆是全国风力最丰富的省区之一,大型并网型风力发电非常适合新疆的地域特色。据新疆风能研究机构介绍,新疆特殊的地形形成了九大风区,总面积约有15万平方公里,可装机储量约在两亿千瓦以上。仅以达坂城风区为例,该风区地处新疆准噶尔盆地和吐鲁番盆地的通风口,一年中10个月以上时间有风,风速稳定,总面积1600平方公里,年风能蕴藏量约250亿千瓦时,可装机容量在400万千瓦以上。
由以上三个案例可看出,气候对生产的方方面面都有着重要影响,不仅造就了温暖潮湿丰富多产的鱼米之乡,而且还促使形成了被誉为“地球之肾”的世界三大生态系统之一—湿地,同时还为能源问题的解决提供了一种清洁的可持续的途径,经济效益、生态效益兼备。不仅如此,气候对人们的日常生活乃至一个地区的风俗文化都有着重要的影响。
案例四:北京地区属暖温带、半湿润大陆性季风气候,冬寒少雪,春旱多风沙,因此,住宅设计注重保温防寒避风沙,砌砖墙,整个院落被房屋与墙垣包围,硬山式屋顶,墙壁和屋顶都比较厚实。北京四合院亲切宁静,庭院尺度合宜,把大地拉近人心,是十分理想的室外生活空间,庭院方正,利于冬季多纳阳光。东北气候寒冷,院子更加宽大。北京以南夏季西晒严重,院子变成南北窄长。西北风砂很大,院墙加高。
宁夏地处西北远离海洋,降水少、温差大,气候严寒,大陆性气候特征明显,冬春干旱多风沙,盛行偏北风,故住宅一般不开北窗。为保温防寒,取厢房围院形式,且房屋紧凑,屋顶形式为一面坡和两面坡并存。
中国西北部地区气候干燥少雨、冬季寒冷、木材较少等自然状况,为冬暖夏凉、十分经济、不需木材的窑洞,创造了发展和延续的契机。
由于气候湿热,为便于通风隔热潮防雨,中国南方院落中多设天井,墙壁和屋顶较薄,有的有较宽的门廊或宽敞的厅阁。同时屋顶也用两面坡的排水结构。
不同气候影响了不同地域的建筑文化。
案例五:“春城”昆明
昆明地处低纬度高原,天气常如二、三月、花开不断四时春,人称“春城”,是云南省的首府,位于我国西南边陲,云贵高原中部,云南省东部,滇池盆地北部,三面环山,南临滇池,河流纵横,形成了富腴肥沃的坝子。由于海拔高,纬度低,阳光明媚,雨量充沛,气候如春,景色宜人。昆明四季温暖如春,全年温差较小,市区年平均气温在15℃左右,最热时月平均气温19℃,最冷时月平均气温7.5℃。虽然昆明有“春城”的美称,但但一日之间有四季。尤其是春、冬两季,早晚气温一般比较低,所以旅行者最好能准备几套保暖的衣服,以备不时之需。
案例六: 盛夏,沙特阿拉伯浩瀚的沙漠地带温度高达40摄氏度~50摄氏度,可当地居民穿着宽大的阿拉伯长袍在热浪灼人的沙漠上行走却显得气定神闲,若无其事。
阿拉伯长袍的特点是宽大,能遮住全身,外面的风吹到袍内,能迅速蹿遍上下,起着一种“烟囱效应”,将身体散发出的湿气一扫而去。与此同时,由于人体皮肤都被宽大的长袍遮住,阻挡了日光对体表的直接照射,而灌满长袍的空气又起到了良好的隔热作用,因而使人感到凉爽、舒适。沙特阿拉伯的服装设计研究专家认为,阿拉伯长袍的设计对创造长袍内舒适的微小气候起着很好的调节作用。
所谓长袍内的微小气候,是指人体皮肤与最内层服装内空气湿度与温度的状态。无论冬季还是夏季,阿拉伯人穿着最感舒适的状态是皮肤表面的平均温度约在33摄氏度,长袍内层衣服与皮肤间的空气温度为31摄氏度~33摄氏度,相对湿度为40%~60%,如果长袍内微小气候不理想(不论是温度或相对湿度),都会使人体中枢神经的体温调节中枢处于紧张状态,以致引起身体其他系统功能的某些紊乱,出现烦躁、困乏、心悸、头晕等症状。
处于亚热带沙漠气候的沙特阿拉伯人为了创造服装内舒适的小气候,制作长袍的布料会选择那些吸湿性和散发性都较好的织物,如麻织物、丝绸、棉织物等。长袍的色彩大多选用清淡颜色,一般以白色、淡蓝、浅绿色为主,以尽量减少吸收热量。在款式设计上,都从有利于内外空气对流的角度来考虑,长袍的领和袖开口部分都相对大一些,并以穿着宽松、内外换气良好为前提。穿着这样宽松的长袍,在活动时能起到鼓风的作用,加速了空气对流,休憩时则起到“烟囱”的作用,促进长袍内的换气。
沙特阿拉伯人选择长袍作为主要服饰,就是为了适应终年少雨燥热的热带沙漠环境。
全球气候变暖的影响与危害有哪些?
1、海平面上升的影响 过去的百年海平面上升了14.4cm,我国上升了11.5cm。海平面升高的原因,主要是海水热膨胀,当海洋变暖时,海平面则升高。全球升温会引起地球南北两极的冰山融化,这也是造成海平面上升的主要原因之一。海平面上升的直接影响有以下几个方面: (1) 低地被淹:全球变暖使海平面升高,沿海地区的人们不得不加高防洪堤坝来保护人民的生命财产安全。比如荷兰的地势本来就很低,由于海平面上升导致荷兰的困境日益窘迫。而太平洋的许多岛国比如图瓦卢等更因为海平面上升导致举国移民。
(2) 海岸被冲蚀
(3) 地表水和地下水盐分增加,影响城市供水。
(4)地下水位升高。
(5) 旅游业受到危害。沿海的海滩旅游一直以来广受欢迎。海平面上升导致沙滩受到侵蚀,风光不再;一些沿海景点更是遭到灭顶之灾,直接影响旅游业的收入。
(6) 影响沿海和岛国居民的生活。占世界人口三分之一的沿海地区是经济最发达的地区。海平面上升会使一些经济发达的岛国从地面上消失,一些海滨大城市如上海纽约等也难逃厄运。 2、对动植物的影响
气候是决定生物群落分布的主要因素,气候变化能改变一个地区不同物种的适应性并能改变生态系统内部不同种群的竟争力。自然界的动植物,尤其是植物群落,可能因无法适应全球变暖的速度而做适应性转移,从而惨遭厄运。以往的气候变化(如冰期)曾使许多物种消失,而一些物种则从气候变暖中受益,比如气候变暖使天敌减少,气候温暖使生物栖息地扩大等。
3、对农业的影响
一年中温度和降水的分布是决定种植何种作物的主要因素,温度及由温度引起降水的变化将影响到粮食作物的产量和作物的分布类型。气候的变化曾经导致生物带和生物群落空间(纬度)分布的重大变化比如气候变暖使玉米在挪威的种植成为可能,之后的间冰期又使玉米在挪威消失。除此之外,全球变暖还会使高温、热浪、热带风暴、龙卷风等自然灾害加重。因此,全球气温升高后,世界粮食生产的稳定性和分布状况将会有很大变化。
4、对人类健康的影响
人类健康取决于良好的生态环境,全球变暖将成为下个世纪人类健康的一个主要因素。极端高温将成为下世纪人类健康困扰变得更加频繁、更加普遍,主要体现为发病率和死亡率增加,尤其是一些传染病将危及热带地区和国家,某些目前主要发生在热带地区的疾病可能随着气候变暖向中纬度地区传播。
全球气候变暖的影响与危害:
1、全球变暖会使冰川融化,世界便会因为缺水而产生的冲突和战争。而如今全球变暖使得冰山冰雪的积累速度远没有融化速度快,甚至有些冰山已不再积累,这就断绝了当地的饮用淡水。
2、影响沿海和岛国居民的生活,使他们的生活受到威胁。如果极地冰冠融化,经济发达、人口稠密的沿海地区会被海水吞没,马尔代夫、塞舌尔等低洼岛国将从地面上消失,很多海滨大城市也会受到牵连。
3、全球变暖会使我们的生态环境变得更差,人类的健康也会受到影响。极端高温将成为下世纪人类健康困扰变得更加频繁、更加普遍,主要体现为发病率和死亡率增加。
4、最底层的食物会消失,造成很多以海洋生物为食的生物死亡。全球变暖会导致海洋温度上升,海洋食物链的最底层死亡,然后污染海洋,如此恶性循环。
5、温度上升还会让很多无脊椎动物从冬眠中苏醒,然后这些昆虫错过捕食时机而大量死亡,由于昆虫提前苏醒导致吃掉大量森林和庄稼。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。